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Abstract

Pulse-rate variability (PRV) is a rather interesting al-
ternative in blood pressure (BP) estimation. Notwith-
standing, the suitability of PRV for BP monitoring is un-
der dispute, while the performance of the reported PRV
studies could be improved. Five-minute electrocardiogra-
phy (ECG) and PPG recordings of 202 patients from the
MIMIC-II database were recruited and classified into nor-
motensive (NT), prehypertensive (PHT) and hypertensive
(HT). PRV and asymmetry analysis was performed using
time-, frequency-domain and non-linear indices. HRV was
used to verify the results using Bland-Altman (BA) and
correlation. Multi-class (MCC) and single-class classifi-
cation was performed with 10-fold cross-validation and a
20% test set. For all but NT group, correlation was high
(ρ ≥ 0.8, p < 0.05) for all features except for LF/HF. BA
analysis suggests a high concordance between most PRV
and HRV features (CI > 90%, BA ratio < 10%). MCC,
NT and HT classification accuracy was up to 95%, 90%
and 92.5% using 6-, 7- and 5-feature models, respectively.
PRV is reliable in monitoring BP in critically-ill patients.
Adding pulse-rate asymmetry to PRV analysis significantly
improves the results and outperforms previous studies ap-
plying PRV for BP estimation using the same database.

1. Introduction

Connected with premature morbidity, hypertension (HT)
currently affects more than one billion people [1]. The
most efficient way to face HT and its harmful afteref-
fects is prevention by regular blood pressure (BP) mea-
surements [1]. In order to avoid cases of masked HT
in cuff-based measurements, the so far golden standard
of HT detection, continuous BP monitoring methods are
constantly developed [1]. Electrocardiography (ECG) and
photoplethysmography (PPG) technologies are often re-

cruited for this purpose [2–4]. Nevertheless, they are typi-
cally used in conjunction, which is not often feasible [2,3].

One of the most reliable methods which allows the
BP estimation using only one of the aforementioned sig-
nal types is through heart-rate (HR) variability (HRV)
analysis [5]. HRV is associated with BP through the
autonomous nervous system (ANS)-baroreceptor connec-
tion [5]. A more specialized HRV analysis is HR asymme-
try (HRA) analysis, which allows the separate investiga-
tion of the ANS components [6]. Curiously enough, HRA
has not yet been recruited for BP-related research.

Traditionally, HRV is assessed from ECGs [4]. How-
ever, ECG technology is designed to be used for some
hours or days, but not for longer use due to lack of com-
fort. A HRV equivalent could be PRV, derived likewise
from PPGs. In this respect, only few studies have derived
BP-related information from the HRV of PPGs [7–9].

The main reasons why PRV is not extensively utilized
are trust issues posed often regarding the ability of PRV
to resemble HRV and hence to extract BP-related infor-
mation [10]. This fact significantly limits the progress in
HT detection, as PPG technology is widely available and
its use is imperceptible for the user. The present work
aims to a deeper analysis of the PRV-HRV resemblance in
BP monitoring and the development of optimized models
based on PRV and PRA in order to efficiently detect HT.

2. Materials and Methods

The MIMIC database was used [11]. 202 ECG (lead
II), PPG and ABP recordings with a duration of five
minutes were extracted with an original sampling fre-
quency of 125 Hz. ECGs were then resampled to 500 Hz
and PPGs to 250 Hz to comply with the minimum sam-
pling frequency recommendations for HRV/PRV calcu-
lation. ABP signals were exclusively used to manu-
ally classify the patients into one of the three BP cate-
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gories: normotension (NT) (SBP<120 mmHg), prehyper-
tension (PHT) (120 mmHg≤SBP<140 mmHg) and HT
(SBP≥140 mmHg), where SBP is the systolic BP.

Preprocessing consisted of powerline interference, mus-
cle noise, baseline wander and ectopics correction and R-
peak detection for the ECGs [12–14]. Preprocessing for
the PPG signals started with a high-pass Butterworth filter
(2nd order) with a 0.5 Hz cut-off frequency and a 3-level
discrete wavelet transform to remove the baseline fluctua-
tion and the high frequency noise, preserving at the maxi-
mum the original signal’s morphology. If present, ectopic
beats were also corrected as with ECG. The final prepro-
cessing step of the PPG signals was the detection of the
PPG pulse peak, with a second derivative technique [15].

The HRV/PRV [5,16] and HRA/PRA features were cal-
culated [6], with the same technique for the ECGs and the
PPGs, using the R and the pulse peaks, respectively. A
list of the HRV/PRV and HRA/PRA features can be seen
in Table 1. While each HRV/PRV feature reveals sympa-
thetic or parasympathetic response, HRA/PRA can reveal
either functions depending on its value.

For the statistical analysis, three separate groups were
tested. In the first case, a 3-class split by NT, PHT and
HT was performed (Group 3CL). In the second and third
cases, binary splits were conducted (Groups NT/non-NT
and HT/non-HT). Comparison at each group was per-
formed by non-parametric tests (Kruskal-Wallis-KW for
comparison among 3CL and Mann-Whitney U-test -MWU
for each pair). Classification models were created by op-
timizable SVM classification with 10-fold cross validation
and a test set of 20%, after feature selection with the help

Table 1. A list of the HRV/PRV and HRA/PRA features.
HRA/PRA can be connected either with sympathetic or
parasympathetic nervous system, depending on their score.

Features Details
SDNN [ms] sympathovagal balance
VARNN [ms] sympathovagal balance
RMSSD [ms] parasympathetic
pNN50 [ms] parasympathetic
VLF [ms2/Hz] sympathetic
LF [ms2/Hz] sympathovagal/sympathetic
HF [ms2/Hz] parasympathetic
LF/HF sympathovagal balance
SD1 [ms] parasympathetic
SD2 [ms] sympathovagal balance

H
R

V
/P

R
V

SD1/SD2 sympathetic

R
esponse

H
R

A
/P

R
A PI [6] Porta’s index Fullnam

e

GI [6] Guzik’s index
SI [6] Slope index
AI [6] Area index
DI Deceleration index

of ANOVA. Prior to feature selection, each feature was
normalized according to their z-score to account for dif-
ferences in magnitude due to different metrics.

For the HRV-PRV resemblance and differences in HT
detection, Pearson correlation and Friedman ranksum (FR)
tests were applied. Finally, the mean HRV/PRV differ-
ences were tested with Bland-Altman (BA).

3. Results

Table 2 shows the statistical comparison for each group.
Due to lack of space, the PRA features that did not show
statistically significant differences are omitted. For the
3CL group, all features vary significantly (p < 0.05)
among the 3 BP states. The discrepancies are mainly
found between PHT and HT classes. Regarding the NT-
PHT comparison, statistically significant differences are
only observed for pNN50 and PI, GI. In NT/non-NT group,
statistically significant differences are detected in all PRV
and PRA features but RMSSD, SD1 and LF/HF. For the
HT/non-HT group, the only features that did not show a
statistically significant difference were pNN50 and GI.

The accuracy of the best performing features as well as
for the multi-feature classification is illustrated in Figure 1.
For the 3CL group, the accuracy is shown by using once
each class as positive. It can be easily observed that the
3CL group achieved the best accuracy for all features, al-
though with small difference in most cases. Regarding the
1-vs-all analysis, the NT/non-NT group showed slightly
better results in the single-feature classification but lower
accuracy in the multi-feature classification (MC).

Overall, the MC showed the best results, with an accu-
racy of up to 95% for the 3CL, 90% for the NT/non-NT
and 92.5% for the HT/non-HT, with models consisting of
6, 7 and 5 features, respectively. More specifically, SDNN,
VARNN, pNN50, HF, SD1 and PI features were included
in the model for the 3CL group, median, SDNN, VLF,
SD2, SD1/SD2, PI and GI for the NT/non-NT and mean,
RMSSD, VLF, LF and SD2 for the HT/non-HT model.

The resemblance study results can be seen in Table 3.
Starting with correlation analysis (ρ), the results depend
on the class type and the feature, with the HT class show-
ing significantly higher correlations in most cases. Regard-
ing the features, the highest correlations were observed for
VLF, LF and SD2 in all BP types (0.87−0.99), with SDNN
and VARNN showing also very high correlations for the
PHT and HT classes. On the other hand, the lowest cor-
relations were observed for RMSSD and LF/HF for all BP
types (0.22− 0.99), but more specifically for the NT type,
where HF correlation was also quite low (0.22).

According to FR, HRV and PRV features were statis-
tically different (p ≤ 0.001). The percentage of record-
ings falling within the confidence interval (CI) indicates
whether there is coherence between HRV/PRV. Indeed,

Page 2



Table 2. Statistical comparison (KW and MWU) for the 3CL (first 4 columns) and the NT/non-NT and HT/non-HT groups.

Features KW NT-PHT PHT-HT NT-HT NT/non-NT HT/non-HT
SDNN < 0.0001 0.0991 < 0.0001 0.0002 0.0431 < 0.0001
VARNN < 0.0001 0.0991 < 0.0001 0.0002 0.0431 < 0.0001
RMSSD 0.0005 1.0000 0.0001 0.0099 0.0981 0.0002
pNN50 < 0.0001 0.0055 < 0.0001 0.0261 0.0001 0.9773
VLF < 0.0001 0.1624 < 0.0001 0.0005 0.0327 < 0.0001
LF < 0.0001 0.1166 < 0.0001 0.0001 0.0234 < 0.0001
HF 0.0001 0.6937 0.0001 0.0013 0.0187 < 0.0001
LF/HF 0.0051 0.0504 0.0011 0.3915 0.8898 0.0009
SD1 0.0005 1.0000 0.0001 0.0099 0.0981 0.0002
SD2 < 0.0001 0.2230 < 0.0001 0.0001 0.0149 < 0.0001
SD1/SD2 0.0146 0.6095 0.0035 0.0841 0.0431 < 0.0001
GI < 0.0001 < 0.0001 0.0001 0.2089 0.0025 0.0709
PI < 0.0001 < 0.0001 < 0.0001 0.1824 < 0.0001 0.0001

NT
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HT
NT/non-NT
HT/non-HT
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Figure 1. Classification accuracy for selected PRV fea-
tures as well as the multi-feature classification (MC).

90% or more of the recordings were within CI, indicat-
ing high agreement. The same observation was corrobo-
rated by the BA ration (BAR), which depicts the ration of
bias. In most cases, BAR was close to 0%, indicating a
very high concordance, especially for frequency-domain
features. SD1/SD2 showed values between 21 − 49%, in-
dicating moderate to low agreement. LF/HF showed total
incoherence, with very high BAR values.

4. Discussion

PRV-oriented study has potential in HT detection, but is
often hindered due to dubious resemblance of PRV with
HRV [10]. This study aimed to elucidate this issue by per-
forming an exhaustive analysis on PRV-HRV correlation,
including the assessment of discrepancies and similarities.
Correlation and statistical comparison results were incon-
sistent, with correlations varying according to features and
BP states, but showing generally satisfactory values, while
FR indicating totally statistically significant differences.

This incoherence highlights the importance of choosing
the correct test depending on the analysis. The most suit-
able measure of similarity in biomedical data comparison
is thought to be BA, which focuses on the mean difference
between signals. As a matter of fact, BA analysis showed
an overall high aptness of PRV to resemble HRV.

The second objective was to introduce implementable,
optimized models able to detect HT or high BP from PPG
recordings. 5- to 7-feature models were created using PRV
and PRA features, achieving an accuracy of up to 95%,
which is the highest reported so far in PRV-oriented stud-
ies [7–9]. The difference between the present and previous
studies is the use of optimizable models, which are easy to
be calculated as well as the inclusion of PRA, which offers
a more profound insight of the autonomous nervous sys-
tem function and hence a more complete BP-related anal-
ysis. The proposed models are rather simple, using only a
few features. Therefore, they can be implemented in PPG
technologies and contribute to the race against HT.

5. Conclusions

Although not in total agreement, PRV is a reliable HRV
substitute in BP-oriented studies. The present work intro-
duced simple, robust and reproducible models using PRV
and PRA features able to detect HT. Given the high avail-
ability of PPG over ECG recordings, the use of these mod-
els could lead to a faster and more extensive HT detection.
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Table 3. Correlation (ρ), Friedman ranksum test (Fd) and Bland-Altman analysis (CI, BAR). Correlation ranges from 0−1.

NT PHT HT
Feat. ρ Fd CI BAR ρ Fd CI BAR ρ Fd CI BAR

p [%] [%] p [%] [%] p [%] [%]
SDNN 0.65 < 0.001 100 2.3 0.94 < 0.001 98 1.7 0.97 < 0.001 90 1.2
VARNN 0.55 < 0.001 100 0.2 0.98 < 0.001 93 0.2 0.99 < 0.001 97 0.1
RMSSD 0.30 < 0.001 96 1.7 0.72 < 0.001 95 1.5 0.87 < 0.001 97 1.9
VLF 0.95 < 0.001 92 0.4 0.98 < 0.001 98 1.1 0.97 < 0.001 98 0.1
LF 0.87 < 0.001 98 0.6 0.99 0.001 98 1.1 0.97 0.001 93 0.1
HF 0.22 < 0.001 96 0.3 0.50 < 0.001 98 1.4 0.99 < 0.001 98 0.1
LF/HF 0.57 < 0.001 92 717 0.23 < 0.001 91 360 0.68 < 0.001 97 207
SD1 0.30 < 0.001 96 2.4 0.72 < 0.001 95 2.1 0.87 < 0.001 97 2.7
SD2 0.87 < 0.001 98 1.8 0.97 < 0.001 98 1.5 0.99 < 0.001 94 0.7
SD1/

0.70 < 0.001 96 28 0.76 < 0.001 91 21 0.51 < 0.001 97 49SD2
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